Some quotient Hopf algebras of the dual Steenrod algebra
نویسندگان
چکیده
منابع مشابه
Some Quotient Hopf Algebras of the Dual Steenrod Algebra
Fix a prime p, and let A be the polynomial part of the dual Steenrod algebra. The Frobenius map on A induces the Steenrod operation P̃0 on cohomology, and in this paper, we investigate this operation. We point out that if p = 2, then for any element in the cohomology of A, if one applies P̃0 enough times, the resulting element is nilpotent. We conjecture that the same is true at odd primes, and t...
متن کاملInvariant elements in the dual Steenrod algebra
In this paper, we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$, where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$.
متن کاملSub-Hopf algebras of the Steenrod algebra and the Singer transfer
Let A denote the mod 2 Steenrod algebra (see Steenrod and Epstein [28]). The problem of computing its cohomology H∗,∗(A) is of great importance in algebraic topology, for this bigraded commutative algebra is the E2 term of the Adams spectral sequence (see Adams [1]) converging to the stable homotopy groups of spheres. But despite intensive investigation for nearly half a century, the structure ...
متن کاملTruncated Polynomial Algebras over the Steenrod Algebra
MOHAMED ALI It is shown that the classification of polynomial algebras over the mod p Steenrod algebra is an essentially different problem from the classification of polynomial algebras truncated at height greater than p over the Steenrod algebra . 0 . Introduction . Let B = Zp[y2n y2n2, . . . , y2n,] be a polynomial algebra over A(p), the mod p Steenrod algebra, where yen ; has dimension 2ni a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2005
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-05-03637-8